关灯
开启左侧

[经验交流] 真题考点大总结,线代不怕撸不清!

[复制链接]
考研加油 发表于 2020-3-28 16:27:33 | 显示全部楼层 |阅读模式 打印 上一主题 下一主题
 
线性代数这一部分在考研数学中,因为所占的考试题型不多、计算方法比较初等、计算量比较大等特点,导致很多小伙伴对线性代数感到棘手。今天,小编从历年考试的真题中为大家总结线性代数的考点,教教大家在准备阶段如何入手线代。

  线代部分对很多备考的学子来说,最深刻感觉就是,抽象、概念多、定理多、性质多、关系多。如果这些东西掌握不熟练,拿到题不知道如何下手。

  通常一个考题的跨度比较大,一个题目表面上看只是考某一章节的知识点,而处理时可能会涉及多个章节里面的知识点,所以这样给考生复习带来困难和阻力。

  但是考生一弄透了,线代又属于比较容易拿分的部分,因为线代里面的考题类型往往比较固定,考法上面比较稳定。下面通过对历年真题的研究分析,对真题考点分门别类进行总结,对考研复习是大有裨益的。

  ►线性代数章节总结

  •第一章行列式

  本章的考试重点是行列式的计算,考查形式有两种:一是数值型行列式的计算,二是抽象型行列式的计算.另外数值型行列式的计算不会单独的考大题,考选择填空题较多,有时出现在大题当中的一问或者是在大题的处理其他问题需要计算行列式,题目难度不是很大。

  主要方法是利用行列式的性质或者展开定理即可。而抽象型行列式的计算主要:利用行列式的性质、利用矩阵乘法、利用特征值、直接利用公式、利用单位阵进行变形、利用相似关系。06、08、10、12年、13年的填空题均是抽象型的行列式计算问题,14年选择考了一个数值型的矩阵行列式,15、16年的数一、三的填空题考查的是一个n行列式的计算,今年数一、数二、数三这块都没有涉及。

  •第二章矩阵

  本章的概念和运算较多,而且结论比较多,但是主要以填空题、选择题为主,另外也会结合其他章节的知识点考大题。本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。

  其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的则是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题则用到了矩阵的秩的相关性质。

  14的第一道大题的第二问延续了13年第一道大题的思路,考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。16年只有数二了矩阵等价的判断确定参数。

  •第三章向量

  本章是线代里面的重点也是难点,抽象、概念与性质结论比较多。重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。复习的时候要注意结构和从不同角度理解。

  做题重心要放在问题转换上面。出题方式主要以选择与大题为主。这一章无论是大题还是小题都特别容易出考题,06年以来每年都有一道考题,不是向量组的线性表出就是向量组的线性相关性的判断,10年还考了一道向量组秩的问题,13年考查的则是向量组的等价,14年的选择题则考查了向量组的线性无关性。

  15年数一第20题结合向量空间的基问题考查了向量组等价的问题。16年数数一、数三第21题与数二23题考的同样的题,第二问考向量组的线性表示的问题。

  •第四章线性方程组

  主要考点有两个:一是解的判定与解的结构、二是求解方程。考察的方式还是比较固定,直接给方程讨论解的情况、解方程或者通过其他的关系转化为线性方程组、矩阵方程的形式来考。

  06年以来只有11年没有出大题,其他几年的考题均是含参方程的求解或者是解的判定问题,13年考查的第一道大题考查的形式不是很明显,但也是线性方程组求解的问题。14年的第一道大题就是线性方程组的问题,15年选择题考查了解的判定,数二、数三同一个大题里面考查了矩阵方程的问题。

  16年数一第20题矩阵方程解的判断和求解,数三第20题与数二第22题直接考线性方程解的判断和求解,数一第21题第二问解矩阵方程。16年数一、数三第21题与数二第23题第二问直接考矩阵方程解求解,基本都不需要大家做转换。今年数一、数三第20题、数二第22题第二问题都考了抽象的线性方程的求解问题。

  •第五章矩阵

  矩阵的特征值与特征向量,每年大题都会涉及这章的内容。考大题的时候较多。重点考查三个方面,一是特征值与特征向量的定义、性质以及求法;二是矩阵的相似对角化问题,三是实对称矩阵的性质以及正交相似对角化的问题。要的实对称矩阵的性质与正交相似对角化问题可以说每年必考,09、10、11、12、13年都考了。

  14考查的则是矩阵的相似对角化问题,是以证明题的形式考查的。15年数一、数二、数三选择题结合二次型正交化特点然后结合特征值定义考查;大题也是有一个题目相同,都是矩阵相似,然后对角化问题。

  16年数一数三第21题与数二第23题的第一问以考高次幂的形式出现,实质就是矩阵相似对角化问题。今年数一、数三第5、6、20、题与数二第7、8、14、22、14题都考相似、相似对角的判断性质。今年在这章涉及的分数高达20多分。

  •第六章二次型

  本章是第五章的运用,有两个重点:一是化二次型为标准形;二是正定二次型。前一个重点主要考查大题,有两种处理方法:配方法与正交变换法,而正交变换法是考查的重中之重。

  10、11、12年均以大题的形式出现,考查的是利用正交变换化二次型为标准形,而13年的最后一道大题考查的也是二次型的题目,但它考查的则是二次型的矩阵表示,另外也考到二次型的标准形,它是通过间接的方式求得特征值然后直接得出标准形的。后一考点正定二次型则以小题为主。

  14则是以填空题的形式出现的,考查的题目为已知二次型的负惯性指数为1,让求参数的取值范围。15年结合对角化考了个选择题。

  16年数一结合空间解析几何考了二次型的标准型,数三、数二正负惯性指数考察。今年数一、数三第21题与数二第3题考察的就是二次型正交对角化问题。

  综合所述,线代每年的考题都比较固定,大题基本上在线性方程和特征值的角度出。所以建议20的同学在复习线代的时候从以下几个方面去把握。

  1.综合掌握“一条主线,两种运算,三个工具”

  复习过程中,综合掌握“一条主线,两种运算,三个工具”。一条主线是解线性方程组,线代概念非常多而且相互联系,但线代贯穿的主线求方程组的解,只要将方程组的解的概念和一般方法理解透彻,再回过头看前面的内容就非常简单。两种运算是求行列式、矩阵的初等行(列)变换,三个工具是行列式、矩阵、向量。其中,向量组线性相关性是难点,要理解记忆各条定理,理清其中关系,多做题巩固知识点。特征向量与二次型虽不难,但年年必考,计算能力要跟上,多做题才能提高正确率。

  2.网状化知识结构,提高综合分析能力

  线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,复习时应当常问自己做得对不对,再问做得好不好。只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。

  文章开头提到了历年真题中,两道大题考试内容。考生应注意掌握知识点间的联系与区别,例如向量组的秩与矩阵的秩之间的联系,向量的线性相关性与齐次方程组是否有非零解之间的联系,向量的线性表示与非齐次线性方程组解的讨论之间的联系,实对称阵的对角化与实二次型化标准形之间的联系等。灵活掌握他们之间的联系与区别,对做线性代数的两个大题在解题思路和方法上会有很大的帮助。

  3.加强逻辑性,正确简明叙述表述

  线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

  4.理解与把握基本概念,熟练运用基本运算

  线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

  线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。

  5.不要陷入行列式的复杂计算之中

  行列式是线性代数中的基本工具,在研究线性方程组和特征值和特征向量时会用到,有些行列式的计算很复杂,计算量也很大,但考研大纲对这部分内容的要求并不高,只是要求会用行列式的性质和按行(列)展开定理计算行列式,该部分内容不是考试的重点,因此不要在这方面花太多时间,只要掌握基本的公式和计算方法即可。

  从历年考研试题分布来看,涉及行列式计算的题型有4种形式:一是单纯的行列式计算,即题目给出一个具体行列式,要求计算其值,二是给出一些抽象矩阵(方阵)及相应条件,要求计算其矩阵行列式的值,三是在解线性方程组时需要计算其系数矩阵的行列式的值,四是在求解特征值时可能需要计算特征方程的根,这4种题型考生在复习时都要做一些题,掌握其基本解题方法。

  6.抓住线性代数的核心——矩阵

  矩阵和行列式是研究线性代数问题的基本工具,尤其是矩阵,它是线性代数的灵魂,贯穿整个学习过程的始终。

  在求解线性方程组时,主要是通过矩阵的秩来判断解的存在性和唯一性,具体计算时主要是通过矩阵的初等变换来求其解;在分析讨论向量组的线性相关和线性无关时,利用矩阵的性质来判断其相关性和无关性也是常用的一种方法;

  在计算特征向量时,一般都是利用矩阵的性质或解方程组来求解;在解决二次型问题时,首先是利用矩阵运算将其表达为矩阵乘法形式,然后利用矩阵变换将其化为标准形。

  由此可知,矩阵是学习的重中之重。学习矩阵时,一方面要掌握其性质并灵活运用到有关的计算和证明问题中,另一方面要充分结合其它知识点的学习来进一步强化。
回复

使用道具 举报

 
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

热门图文
热门帖子
排行榜
作者专栏

关注我们:微信订阅号

官方微信

APP下载

公司服务热线:

17666062040

公司地址:广州市番禺区大学城明志街1号广州大学城信息枢纽楼812

运营中心:广州市番禺区大学城明志街1号广州大学城信息枢纽楼812

邮编:510000 Email:3234291313#qq.com

Copyright   ©2015-2016  中大考研论坛_中大考研咨询_中大考研网传真题资料(非官方论坛)©技术支持:考研院     ( 粤ICP备19154674号 )